Cosmology Views

LIGO Events and Earth Tide Ripples
LIGO was designed to detect a tiny ripple in Earth's crust caused by a gravitational wave.
There are coincidences between LIGO detections and earth tide events. From this observation, the ripple from an Earth tide is triggering a response in the LIGO system looking for a small signal in the noise, the ripple in the crust from a gravitational wave.
The LIGO system uses templates for 4 event types  to detect; they are binary inspiral events. Each report is one of these 4 types.

The reliability of the LIGO system depends on the accuracy of this pattern matching software.
None of the templates has been validated by a test of the actual event.

The celestial events causing an earth tide in this time period: Full Moon, New Moon, PeriGee, PeriHelion, MJ = Moon-Jupiter alignment.

On 2019-04-23 was an alignment separation of the Moon and Jupiter of only 1 degree, 38 minutes, at the same RA. This is the MJ event.

More than one LIGO event has been detected in the ripples from one earth tide event. There are more LIGO events than earth tide events in the following list.


There are 50 LIGO events associated with 26 earth tide events.

There are only 11 robust GW events (with a higher probability of a match) in the LIGO list of 47. 39 remain only candidates with a probability.

This list has the LIGO events in chronological order but preceded by the associated earth tide event. LIGO events can be reported before or after the earth tide event whose effect is over a span of time.

The lines starting with GW or S are the LIGO events.

GW150914 _ same day after PG

GW151012 _¬  same day as NM

GW151226 _ 1 day after FM

GW170104 _ same day as PH

FM -17-06-09
GW170608 _ 1 day before FM

¬ FM-17-06-09
GW170608 _ 1 day before FM

GW170729 _ 4 days before PG

GW170809 _ 2 days after FM

GW170814 _ 4 days before PG
GW170817 _ 1 day before PG
GW170818 _ same day as PG

NM-17-08-21 _ solar eclipse
GW170823 _ 2 days after NM

S190408an _¬  3 days after NM¬ 

S19040412m _ 4 days before PG

S190421 _ 2 days after FM
S190425z _ 2 days after MJ
S190426c _¬  3 days after MJ

S190503bf _ 1 day before NM
S190510g _¬  6 days after NM

S190512at _ 1 day before PG
S190513bm _ same¬  day as PG

S190517h _ 1 day before FM
S190519bj _ 1 day after FM
S190521g _ 3 days after FM
S190521r _ 3 days after FM

S190602aq _ 1 day before NM

NM-19-07-02 _ solar eclipse
S190630ag _ 2 days before NM
S190701br _ 1 day before NM
S190706ai _ 4 days after NM
S190707q _ 5 days after NM

S190720a _¬  2 days after FM

S190727h _ 4 days before NM
S190728q _ 3 days before NM

S190814bv _ 1 day before FM

S190828j _ 2 days before NM
S190828l _ 2 days before NM
S190901ap¬ ¬  _ 2 days after NM

S190910d _3 days before FM
S190910h _ 3 days before FM
S190915ak _ 2 days after FM

S190923y _ 5 days before NM
S190924h _ 4 days before NM
S190930s _ 2 days after NM
S190930t _ 2 days after NM

S191105e _ 7 days before FM
S191109d _ 3 days before FM

S191129u _ 3 days after NM

S191204t_ 8 days before FM
S191205ah_ 7 days before FM
S191213g _ 1 day after FM

S191215w _ 3 days after FM

Other information:

Only GW170817 had a possible independent confirmation. In June 2019 this event was revealed as a deception.

The hidden¬  story was¬ posted¬ on September 11.

From Wikipedia:
Earth tide is the displacement of the solid earth's surface caused by the gravity of the Moon and Sun. Its main component has meter-level amplitude at periods of about 12 hours and longer.

A new moon or full moon cause a significant earth tide with the Sun also aligned. A perigee does an earth tide regardless of the Sun.

29 of the 50 LIGO events were only a day or two before or after the earth tide event.

All 50 LIGO events were within 8 days of an earth tide event.

For those questioning whether LIGO really detects a ripple in spacetime, this observation helps make the case the LIGO system detects the ripples of an earth tide.


Each search method produces a list of candidate events which are ranked in terms of their signal strength with respect to the detector's noise ‚Ä” a quantity called the "signal-to-noise-ratio" (SNR)  and their statistical significance, quantified by the false alarm rate (FAR), i.e. the rate at which one might expect such a candidate event to have occurred by chance, due simply to the noise characteristics of the detector data mimicking an actual gravitational-wave detection. By setting a FAR threshold of less than 1 per 30 days in at least one of the two matched-filter analysis algorithms, we restricted the list of candidate events and eliminated many candidate signals that are very likely to have been simply artefacts of the detector noise: within these candidates we found 11 events with a probability larger than 50% of having an astrophysical origin, rather than being instrumental noise. These candidates are labeled with the prefix 'GW' followed by the date of the detection (i.e. GW150914). The other candidates are considered as 'marginal' events, unlikely to be of astrophysical origin.

another definition from wikipedia:
In signal processing, a matched filter is obtained by correlating a known delayed signal, or template, with an unknown signal to detect the presence of the template in the unknown signal.
(excerpt end)

My comment:
LIGO looks for a template in the processed data not knowing how many other signals are present. If a terrestrial source can pass through this filter LIGO makes a mistake. The historical analysis indicates this mistake occurs every detection.

LIGO needs independent confirmation for credibility of its claims.

Right now there is an identified terrestrial source for every LIGO claim of an astrophysical source.

Last updated (12/22/2019)